
If the shock wave forms an angle ~ < 45 ~ with the 05 axis, then the variation of the verti- 
cal component along 0~ becomes smooth and less shallow than for ~ = 45 ~ 

In the last case the comparison of the results of the numerical calculation and the ana- 
lytical solution [i] carried out shows that all parameters of the medium on the wave front 
mutually agree with an accuracy of 0.1%, while in the case of the ray approximation [5] their 
values are somewhat reduced. We further discover that the character of variation of the load 
profile along the boundary surface substantially alters the pressure distribution both in 
depth and along the half-space. On the basis of the analysis of the results of the calcula- 
tion we note that p, u, v in the region of aftereffect of the moving load ~ > I, dependent 
on the depth, vary according to a nonlinear law (in contrast to the region of application of 
the load ~ ~i). 

From Fig. 6 we see that for $ = 0.2 an exponential load in comparison with a load of 
finite length leads to an increase in the values of p, u, v at all points of the half-space, 
which was to be expected, since the value of the applied load (9) on the free surface is 
greater than (8). 

The given scheme allows us to calculate the parameters of a nonlinearly compressed half- 
plane also in the case of nonlinear unloading of the medium. 

The authors thank Kh. A. Rakhmatulin for the valuable advice and discussion of the re- 
sults of the work. 
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APPROXIMATE EQUATIONS OF DYNAMICS OF AN ELASTIC LAYER 

V. A. Saraikin UDC 534.12 

With the investigation of wave phenomena in an elastic layer, wide use has been made of 
approximate theories based on representation of the displacements in the form of series with 
respect to the middle surface [1-3]. Expansion in series in terms of Legendre polynomials is 
one method for the representation of the sought solution of the theory of elasticity, and has 
advantages over the remaining methods [I]. Retaining one number of terms or another for the 
coefficients of the series, different variants of the equations of the dynamics of plates can 
be derived. The equations of Bernoulli--Euler and TimoshenkO have been the most completely in- 
vestigated. In addition, for the description of processes taking place in a layer, in recent 
years different variants of the refined equations have been brought in [2, 4, 5]. 

The interest in the vibrations of plates, and the derivation of more exact equations, is 
connected partially with the fact that a transition from the equations of the theory of elas- 
ticity to approximate equations leads to errors in the description of non-steady-state process- 
es. Thus, due to the approximate manner of taking account of the distribution of the dis- 
placements over the thickness of the layer, no account is taken of'surface Rayleigh waves or 
of the fronts of waves reflected repeatedly from the surfaces of the layer; i.e., in the deri- 
vation of the equations of plates, high frequencies are ignored. These rapidly varying parts 
of the solution of the theory of elasticity are determined in the expanded terms of the dis- 
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placements, discarded with the derivation of variants of the equations of the dynamics of 
plates which are sufficiently simple for analysis or for computer calculation. It is clear 
that a better approximation of the solution of problems of the theory of elasticity by the 
solutions of approximate equations can be attained by increasing the number of terms of the 
series and, correspondingly, increasing the order of the system of equations for a plate. 
Therefore, there arise questions of the errors in solution of problems of the theory of elas- 
ticity using these equations, and of the region of applicability of the equations of the dy- 
namics of plates. 

Comparisons of the solutions of approximate equations with an exact solution of the 
problem of elasticity have been made with large times for the long-wave asymptotic curve [6] 
and in the initial stage of the process for a cross section under a local load [I, 7]. It 
has been shown that the Kirchhoff and Timoshenko theories well describe the long-wave part 
of the solution; the Timoshenko theory does so in a broader range. At the start of the pro- 
cess, where the ratio of the thickness of the layer to the extension of the region occupied 
by the perturbations is on the order of unity, the rapidly varying part of the solution plays 
a significant role. A comparison with an exact solution of the theory of elasticity shows 
that here the Kirchhoff theory is unsuitable, while the Timoshenko equations give reliable 
results after the expansion wave has traversed a quarter of the layer thickness. The ques- 
tion of applicability of approximate equations in cross sections far from the point of action 
of a load at the moment of the arrival of perturbations remains open. 

With this aim in view, in the present work a comparison is made between one exact solu- 
tion of non-steady-state problem of the theory of elasticity for a layer and the equations 
of the dynamics of plates describing cylindrical bending. For purposes of comparison, in 
addition to the Bernoulli--Euler and Timoshenko equations, the article gives refined equations 
of the dynamics of plates. Particular stress is lald on study of the quantities in terms of 
~lich the derivatives of the displacements are expressed: the momen=, the transverse force, 
and the rate of bending. 

Let the layer occupy the region 0~-~z <i, Ixl < ~, IYl ~-~; x, y. z are the coordinates 
of points in a rectangular Cartesian system. Here, the thickness of the layer h, the density 
of the medium, and the velocity of the expansion wave c~ are taken as the units of measure- 
ment. A unit of measurement is the interval of time, in the course of which the expansion 
wave traverses a distance equal to the layer thickness. 

The source of the perturbations consists of two self-equalizlng loads, identical in va!- 
ue, applied instantaneously at the moment of time t = 0 to the layer surfaces z = 0 and z = 
i~ We consider a plane stressed state (the loads vary along the y coordinate) 

(y~ = ~ ( l ' 2 ~ ) [ u ! ( e  ~ + x D l 6 o ( t ) ,  % =  = 0 (z = O, z = i ) ,  ( i )  

where oij are the components of the stress tensor; ~o(t) is a function of a unit discontinu- 
ity; e is a real parameter; -- and + correspond to the planes z = 0 and z = i. With r = 0, 
in the boundary conditions we obtain the loads ;(i/2)6o(t)~z(x) concentrated along the lines 
x = z = 0 and x = 0, z = i. The initial conditions of the problem are null. 

This problem describes the main non-self-equalizing part of the field with bending of 
the layer by a vertical force acting only on the plane z = 0. The symmetrical component of 
the load 

corresponds to a field which with bending has a secondary role. With a transition to the 
equations of the dynamics of plates, this load is determined only by the edge effect with x = 
0 and the peak at the front of the shear wave x = c~t. Outside these regions, the perturba- 
tions are practically equal to zero [i]. 

After the application of Laplace transforms (with respect to t) and Fourier transforms 
(with respect to x) to the equations of the theory of elasticity and to the boundary condi- 
tions (i), the transforms of the solution of the problem are found. Expanding the denomina- 
tor of the transform of the solution for the layer in series in terms of exponential powers, 
and inverting each term, we find a solution in explicit form as the sum of repeatedly re- 
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fleeted waves. Summation and computer calculation of the analytical solution obtained were 
carried out in the same way as in [8]. Such a numerlcal--analytical method makes is possible 
(in distinction from a difference scheme) to calculate a rapidly varying solution with a 
rather high degree of exactness and to bring out the high-frequency thicknesses of the vibra- 
tion, which arise as a result of the reflection of shock waves from the layer surfaces. The 
error in calculation of the problem is determined only by the errors in computer rounding-off 
in the performance of the arithmetical operations. 

In Figs. 1-3, the heavy solid lines represent the results of calculations of the stress- 
es and of the vertical component of the velocity ~w/~t in accordance with the theory of elas- 
ticity. The calculations were made with e = 0.001; i.e., the load is concentrated with re- 
spect to the thickness of the layer. The Poisson coefficient was taken equal to 0.292. This 
value corresponds to a dimensionless value of the velocity of the shear wave c2 = 0.542. 

We note that the curves were plotted from points a distance of 0.05 apart along the axis 
of abscissas. Therefore, the front peaks (in their vicinity, the stresses and the velocities 
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are proportional to z -I/2) are written with a certain error, since with an increase in the time 
the width of a front peak, where this asymptotic is located, becomes negligibly small in com- 
parison with the spacing 0.05. 

Approximate equations of the dynamics of plates can be obtained with a given degree of 
exactness by expanding the displacements in series in terms of Legendre polynomials Pn in the 
segment 0~ z~-~!. We use the results of a derivation of the equations of the dynamics of a 
plate carried out in [i]. It must only be taken into account that as the unit of length here 
the layer thickness must be taken instead of the half-width. 

In the expansions of the displacements we retain two terms 

u(t, x,  z) -= 3al(t ,  x)Pl(~)  + 7ua(t , x)Ps(~) , 

w(t, x, z) = wo(t, x)Po(~) + 5w~(t, x)P~(D, 
~ = 2 z - - l ,  0~-~ z ~ i .  

( 2 )  

The equations of the bending deformations of a plate for the terms written in (2) with 
a non-self-equalizing load (i) have the form 

a,~ (t) g~u~-- 2(1 9.~o~.o 4c~u( l )  + 2 ( t - - 2 c ~ ) - - ~ - f f - - - O ,  
- -  c2)  ~ - -  

. - -  . .~-x - -  tO ( l  - -  c~ - - 2 4 c ~ u ( 1 )  + 2 ( i - - c ~ )  ~ = 0 ,  

, 2c 20u( l )  L.2wo ~- 2 ~ = 2az~ (t, x,  0), 

. Ou~ _ t2 w(.t) q- 2 c , ~  = O, L ~ w ~ + t 2 w  o - 6 ( t - c ~ )  ~ 

u(i) = u(t, x, t), w(l) --= w(t, x,  t). 

(3 )  

Here and in what follows, L i is the operator c~(~al~x a) -- (~al~t a) (i = 0, ..., 3). 

Depending on the number of terms retained in (2), different approximations of the equa- 
tions of the theory of elasticity are obtained. For each approximation, there are several 

variants of the approximation of the solution. 
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Thus, neglecting in (2) the curvature of the cross section and the nonuniformity of the 
distribution of the bending over the thickness (us = w= = 0), we obtain a first approxima- 
tion, i.e., a system of equations of the fourth order for ul, wo with the operator (2.11) of 
[i], a short-wave approximation of the solution. The equations allow us to describe the rap- 
idly varying part of the solution, admitting an error in determination of the slowly varying 
components. 

These shortcomings are eliminated to a considerable degree in another variant of the 
first approximation, i.e., the Timoshenko equations. Formally, their derivation is based on 
the fact that partial account is taken of the curvature of the cross sections and of the 
change in the value of the bending w along the coordinate z (us ~ 0, w2 # 0), but the deriva- 
tives of u3 and wa are neglected in the second and fourth equations [i]. Expressing u3 and 
w~, after substitution into the first and third equations, we have 

owo 1 L3u 1 -- 2c~ (6u l  + -~ 'x  / = O, 

Lowo + 6c~ o ~  _ - ~  7x -2%~ (t, x, 0), c o - - ] / ZT c ~ .  
(4) 

In addition, neglecting the longitudinal inertia and the shift (~2u~/~ta ~ O, 6u, 
--%wo/~x), from system (4) we obtain the Euler--Bernoulli equation 

04Wo 12 02u'o 24 
ax, ~ ~ at". - ~-~ '~" (t, x,  o) ,  

(5) 

~ = 2c.~ V J- - ~ ,  

where c3 is the rate of propagation of longitudinal perturbations in the plate. 

From the procedure for the derivation of the Bernoulli--Euler equations it can be seen 
that the simplifications are achieved to the detriment of the rapidly varying part of the 
solution. Therefore, for describing the initial stage of the motion of the cross sections 
at the moment of the first entrances of the waves, Eq. (5) is unsuitable until the bending 
deformations have become established. 

The Timoshenko equations are thus an intermediate variant, coinciding asymptotically 
with Eq. (5) for smoothly developing processes; they partly retain the advantages of the 
short-wave approximation. 

An analogous situation is observed with the derivation of different variants of the sec- 
ond approximation, i.e., systems of equations of the sixth order. Retaining the values of 
u~, wo, w2, and assuming that the cross sections remain flat with bending (us = 0), from (3) 
we find a short-wave approximation of the solution. It corresponds to a syste m of equations 

of the sixth order 

- Ox Ox 

L._,w o ~- 6c-~ au, _ 2c~-. (t, x, 0), ( 6 )  
- d l  " "  

4~h -- 0 

with the operator [i] 

LIL~--(iO L.: L~---~c~ ) ~- l.c~j 

This system should already give a less significant error in description of the long-wave 
part of the solution. The asymptotic of its operator for slow processes (~/~x ~) + [(12/c~)- 
(8~/3t~)] coincides with the operator of Eq. (5). 
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Another variant of the refined equations in the second approximation is obtained with 
the condition us # 0. It is assumed that the second derivatives of us can be neglected in 
comparison with the absolute value of 168c~us. This permits us to express us from the second 
equation, and to eliminate from the remaining equations of system (3) 

5 '_' d ' r o  5 , ,  du',  
L'iu : lOc?,ul_ -gc,_ Ox 5kb -- l l c ~ ) _  o x  = O. 

_ o Ou: 5 20hc., 2q:- (t, x. 0),  
L:~u" o - -  be.-, Ox b c2 ox---~ j = . , , 

9 

o:, , , .  ' ~ 1 7 6  ' ~ ( t  - 2~i) '~' ' '  - -:  ~ : ~ ( t .  x .  o). 
Ot 2- : ( iOu ' . . ,  , 5 Ot 2 ~Sz o 

After the replacements u~ = $,/6, Wo = u, + X/60, wa = X/60, we obtain Eqs. (12-14) of 
[4], derived by a variational method. 

The solution of the above variants of the equations of the dynamics of plates was sought 
by the method of finite differences. For Eq. (5), an explicit finite-difference scheme was 
adopted. The relationship between the spacing with respect to the time At and the spacing 
with respect to the spatial coordinate Ax was determined from the condition of the stability 
of the difference scheme for equations of the parabolic type At = (/3/cs)(bx) 2. In the cal- 
culation it was assumed that Ax = 0.i. Since r = 0.001 in (i) is small and the whole change 
in the load takes place practically in one spacing, the value of 2azz(t , x, 0) in the right- 
hand part was the difference analog of a delta-function, i.e., a rectangle with a height of 
1/2 �9 5x and a base 2Ax. As boundary conditions with x = 0 there were taken the absence of 
an intersecting force and the equality to zero of the first derivative of wo as a result of 
the symmetry of the bending with respect to the zero cross section~ At infinity (x = 600 Ax) 
the bending and the moment, i.e., the second derivative of wo, were equated to zero. 

With the choice of a calculating scheme for the remaining variants of the approximate 
equations, preference was also given to an explicit difference scheme of the "cross" type. 
A comparison between this and an implicit scheme showed that integration of the equations in 
accordance with an explicit scheme has advantages in some cases. 

We note that, with integration of the approximate equations, the discontinuous part of 
the solution was separated out using a method developed by the authors of [9]. This was done 
to decrease the specific effects of a discrete model of the medium, appearing in a blurring 
of the discontinuities with the calculation of discontinuous solutions of hyperbolic equa- 
tions. With an investigation of the prefront asymptotic of the solution of systems (4), 
(6), u~ always has a discontinuity of the first kind in the second derivatives at the first 
and second fronts. In all cases, the derivative of Wo had a jump only at the first front. 
Representing the solution in the form of the sum of the discontinuous and smooth parts, we 
obtain inhomogeneous systems for determining the values of the smooth (right up to the ,second 
derivative) functions u*, w*, v*: 

Here the discontinuous terms Up, Wp, Vp have the following form: for system (4) 

u : ~ -  .].:.:- ~) [c-3(cj-l,~!)25o(%t-lzl)_co(%t_l~:{)-Sot%t-{x[)], 

. , : ,  -~ 0.5co -2 (c,,t - I : c l )  (50 (c,,t - I  z l ) ;  

for system (6) 

~ ,  ,:~,!~_,:, _ ~.~z'i [ r  - {:~ I ) "6o (~.,t_ - l * ' i )  - "~ (t  - ~,: i/, *,,5o (t - f z I)~, 

- - , )  

~ p  O.oe.,_ "(c.~_t - {~:1) (~o (c~t - - i  x I~ 

It was assumed that, with x = 0, for the components u*, w* there is no rotation of the 

cross section~ and the intersecting force 
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(x = 0). The third condition for a system of the sixth order (6) flows out of the symmetry 
of the component of the bending v* with respect to the zero cross section 

&,*/Ox ~ 0 

(x = 0). 

Ahead of the front x = t (for the Timoshenko equations x = cst) the displacements are 
equal to zero: 

Some results of the calculations are given in Figs. 1-4. The dashed-dot curve corre- 
sponds to solution of the Bernoulli--Euler equations, the dashed curve to the Timoshenko equa- 
tions (At/Ax = 0.i, Ax = 0.025), and curve I to the solution of the system (6) (At/Ax = 0.999, 
Ax = 0.05). 

The stressed states in the cross section of the layer x = O, calculated in accordance 
with approximate theories and found from the equations of the theory of elasticity, differ 
appreciably. Here the approximate equations correctly describe only the mean stresses over 
the cross section (the intersecting force, the bending moment), but the distribution of the 
stresses differs from the "exact" due to its considerable nonuniformity with respect to z. 
The approximate equations describe far better the stressed state in the other cross sections. 
As an illustration, Fig. i gives the distribution of the tangential stress along the x axis 
in the middle plane of the layer z = 0.5 at the moment of time t = I0. It can be seen that 
the Timoshenko equations (dashed) most successfully approximate the solution of the theory 
of elasticity in the region x < CRt (c R is the value of the Rayleigh velocity), with the ex- 
ception of a certain vicinity of x = 0. Equation (5) allows of the greatest error in de- 
scription of the character of the arrival of the front of the shear wave. Equation (6) (Fig. 
I, curve i) determines shear stresses differing from the Timoshenko theory. This is connect- 
ed with the fact that, in this approximation, the distribution of the shear stress over the 

cross section of the layer is not parabolic, but close to constant: 
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The mean values of ~xz over the cross section in the neighborhood of x = 0 differ only 
slightly in accordance with both theories. In the neighborhood of x = c2t (5.2 < x < 6.4), 
Eq. (6) describes the shear stresses better than the Timoshenko equations. 

Figure 2 shows the change in axx with time in the cross section x = 2.5 at the surface 
z = 0, where the load is applied. The value of x/c R at the axis marks the time of arrival of 
the Rayleigh wave. It can be seen clearly how much greater is the deviation at the start of 
the course of the curves, determined by the Bernoulli--Euler equation (5) and by the theory of 
elasticity. The Timoshenko theory and the refined equations successfully describe the change 
in the stress in the whole interval of time. A certain deviation of the solution of Eq. (5) 
with large values of t is explained by the fact that the stress ~xx at the surface z = 0 has 
not yet been established. When it becomes compressive, the solutions of the systems of equa- 
tions (4), (6) go beyond the asymptotic, determined by the Eq. (5). 

Figure 3 gives a representation of the development with time of the rate of bending of 
the middle plane of the layer z = 0.5 in the cross sections x = 0, 2.5, 5. A special charac- 
teristic in the motion of cross sections, far removed from the zero cross section, is a nega- 
tive phase, observed at the start. Then, the rate becomes positive rather rapidly and rises 
asymptotically as Ft. Under these circumstances, the solution of the theory of elasticity 
fluctuates around values of the rate determined by the approximate equation (5), with a frequency 
approximately equal to ~ = 2~c~/h. Failure to take account of the shift and of the longi- 
tudinal inertia in the Bernoulli--Euler equation manifests itself in an earlier motion of =he 
cross sections x = 2.5, 5 (see Fig. 3). This anticipation initially leads to considerable 
differences. The Timoshenko equations (dashed) reproduce the character of the appearance of 
per~urbatlons fairly well. The solution using the refined equation (6) differs from the Timo- 
shenko equations only at the moment of the arrival of the perturbations (Fig. 4, curve !). 
They then come together rapidly. 
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With "smoothing" of the load, the solution of the Timoshenko equations is in better 
agreement with the solution of the theory of elasticity. As an example, Fig. 5 gives the 
results of calculations for loads distributed more smoothly along the x axis. The change in 
the signal with time is given, as before, by a Heaviside function ~o(t). Curves i, 2 show 
the dependence of the rate of bending on the time at the point x = 2.5 in the middle plane 
of the layer for c = 0.i and 0.5, respectively. It can be seen that, even in this small 
range of change in t, the Timoshenko equations (dashed line) already describe well the motion of 
this point. The smoother the loading, the less the differences from the exact solution. 

The analysis carried out in the work allows the conclusion that the Timoshenko equa- 
tions describe fairly well the reaction of a layer to the action of external bending loads. 
They reproduce almost exactly the character of the motion of the cross sections of the layer 
and the distribution of the sought values over the cross section, if it is not necessary to 
take account of frequencies comparable to or higher than2zcl/h. Considerable deviations are 
observed only in a small neighborhood of the cross section where the local load is applied. 
Here reliable results can be obtained only for the rate of bending. It is not very effec- 
tive to bring in refined variants of the equations of plates to describe high-frequency com- 
ponents of the solution of the theory of elasticity. 

.... The author expresses ~is thanks to L. I. Slepyan and M. V. Stepanenko for their evalua- 
tion and advice on the present work. 
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